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We demonstrate that the quasi-equilibrium state in a self-gravitating N-body system after cold collapse is
uniquely characterized by the local virial relation using numerical simulations. Conversely, assuming the
constant local virial ratio and Jeans equation for a spherically steady-state system, we investigate the full
solution space of the problem under the constant anisotropy parameter and obtain some relevant solutions.
Specifically, the local virial relation always provides a solution which has a power-law density profile in both
the asymptotic regions r→0 and �. This type of solution is commonly observed in many numerical simula-
tions. Only the anisotropic velocity dispersion controls this asymptotic behavior of density profile.
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I. INTRODUCTION

Galaxies and clusters of galaxies are typical self-
gravitating systems �SGSs� in the universe. Extracting the
essence of them—the study of the quasi-equilibrium state of
SGSs—is an important clue for understanding the basic
properties of structures in the universe. In the process of the
structure formation of SGSs, a cold collapse and a cluster-
pair collision would be the most fundamental processes.
Therefore, in this paper, we would like to focus on the char-
acteristic properties of the quasi-equilibrium state formed by
such basic processes.

For many numerical simulations, after a cold collapse, a
system settles down to a quasi-equilibrium state, which is
well described by the Vlasov equation for a spherically sym-
metric steady-state system. In such a quasi-equilibrium state,
the spherically averaged density profile is found to be �
�r−4 at the outer region �1,2� and the velocity dispersion is
isotropic near the central region and becomes radially aniso-
tropic at the outer region �3�. Recently, we found two char-
acteristic properties which appear in the quasi-equilibrium
state after a cold collapse �4,5�. One is the linear
temperature-mass relation which yields a characteristic non-
Gaussian velocity distribution. The other is the local virial
�LV� relation which is robust against various initial condi-
tions, such as the density profile and the virial ratio.

The Plummer model is one of the examples which obey
the LV relation. Evans and An �6� discuss the anisotropic
distribution function where the LV relation is satisfied �they
call it hypervirial�, and obtain the analytical solution which
has a constant anisotropy parameter. In this paper, we would
like to explore the relevance of LV relation in the dynamics
of SGSs. Therefore, we assume the general LV relation—

where the virial ratio is constant—and investigate the role of
LV relation in a spherically symmetric steady-state system.
Moreover, we compare the solutions of Jeans equation under
the LV relation and the results of numerical simulations. In
numerical simulations, we use a leap-frog symplectic inte-
grator on GRAPE-5, a special-purpose computer designed to
accelerate N-body simulations �7�.

In Sec. II, we first show the validity of LV relation with
the numerical N-body simulation. Then, assuming the con-
stant virial ratio, we investigate the full solution space of
Jeans equation under the constant anisotropy parameter in
Sec. III. We show the special properties of the LV relation
and obtain analytically the physically relevant solutions. In
Sec. IV, we compare these solutions with the results of nu-
merical simulation and discuss the validity and the consis-
tency of the LV relation. The last section is devoted to dis-
cussions and further developments of the present work.

II. LOCAL VIRIAL RELATION

In a steady state, the gravitationally bound system settles
down to a virialized state satisfying the condition

W̄ + 2K̄ = 0, �1�

where W̄ and K̄ are, respectively, the time-averaged potential
energy and kinetic energy of the whole bound system. This is
a well-known global relation that holds for the entire system.

Here, we define the LV relation at each position r as

2�2�r� = − ��r� , �2�

where � and � are the velocity dispersion ��2=�r
2+��

2

+�	
2 � and the potential energy, respectively. Hence, we de-

fine the LV ratio

b�r� ª − 2�2�r�/��r� , �3�

in order to measure to what extent the LV relation holds.
Actually, this LV relation appears in the quasi-equilibrium
state obtained by some numerical simulations �4,5�. For a
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cold collapse and cluster-pair collision �CC� from an initially
smooth density profile, the LV ratio is shown in Fig. 1. The
value b�r� takes almost unity in the inner region and slightly
reduces in outer region for all of the simulations. On the
other hand, for the case of a spherical collapse �SC� with
�bt=0,a=2� where the initial virial ratio bt=0 and the initial
density profile ��r−2, the deviation at the central region is
significant.

For a wide class of collapses from various initial condi-
tions, such as the change of the virial ratio and the density
profile, the LV relations are almost satisfied. In the next sec-
tion, we investigate the role of the LV relation in a steady
state of the SGS.

III. LOCAL VIRIAL RELATION AND JEANS EQUATION

To begin with, we assume the general LV relation,

2�2�r�
	�r�

= b , �4�

where the relative potential 	�r�ª−��r� and b is a constant.
When b=1, the LV relation is exactly satisfied. The Jeans
equation for a spherically symmetric steady-state system is

d���r
2�

dr
+

2


r
��r

2 = �
d	

dr
, �5�

where the anisotropy parameter 
 is defined as


 ª 1 −
��

2 + �	
2

2�r
2 . �6�

We study the density profile which satisfies the general LV
relation �4� and Jeans equation for a spherically symmetric
steady-state system �5�. We consider the simplest case, where

 is a constant. Following Dehnen and McLaughlin �8�, who
solved the Jeans equation for a spherically steady-state sys-
tem under assuming the scale invariant phase space density
��3 /��r−��, we investigate the full solution space of the
problem, assuming the general LV relation �4� instead of the
scale invariant phase space density.

Eliminating �r
2 from Eq. �5� by using Eq. �4�, the relative

potential becomes

	 = 	0x2
/�y1/�, �7�

where xªr /r0, yª� /�0, �ª �6−4
−b� /b, and 	0ª	�r0�.
Substituting Eq. �7� into the Poisson equation, the density
profile satisfies the following equation:

� � −
1

�
�� − �a��� − �b� = �x2−2
/�y1−1/�, �8�

where a prime denotes the differentiation with respect to ln x,
and �ª−d ln y /d ln x and ª4�Gr0

2�0 /	0, and

�a ª 2
, �b ª 2
 + � . �9�

We will restrict our consideration to the case with 
�1 and
0�b�2.

First, Eq. �8� has a scale invariant solution y=x−�1 with

�1 =
2�� − 
�

� − 1
, �10�

for ��1. In the case of �=1, Eq. �8� has no scale invariant
solution except for �
 ,b�= �1,1�. For �
 ,b�= �1,1�, the
right-hand side �r.h.s� of Eq. �8� always becomes constant
��, and we can easily integrate Eq. �8�, and the total mass is
infinite �see Appendix A�. Hereafter, we consider the case for
��1 �we discuss the case for �=1 in Appendix A�. In this
case, the structure of the phase space �� � ,�� is classified into
three cases.

�A� �1��a��b for 3−b
2 �
�1�1�b�2�,

�B� �a��1��b for 
�1�0�b�1� or 
�
3−2b
2−b �1�b

�2�, and
�C� �a��b��1 for 3−2b

2−b �
�
3−b

2 �1�b�2�.For each
case, the asymptotic behavior of � is summarized in Table I.
Note that the solution with the power-law behavior in both
asymptotic regions �r→0, � � exists only in Case B. Since
�0 and ��0, non-negativity of the r.h.s of Eq. �8� leads to
the following condition:

TABLE I. The asymptotic behavior of � in Eq. �8�.

Case r→0 r→�

A �→�a, �b, or −� �→�

B �→�a, �1, or −� �→�b, �1, or �

C �→�a, �b, or −� �→�

FIG. 1. The LV relation for some numerical simulations ob-
tained by a typical cold collapse simulation; SC and CC. In the case
of SC, 5000 particles are distributed with a power-law density pro-
file ���r−a� within a sphere of radius R and the initial virial ratio

�b̄t� is set to be small. In the case of CC, each cluster has the equal
number of particles �2500� and all particles are homogeneously dis-
tributed within a sphere of radius R and is set to be virialized ini-
tially. The initial separation of the pair is 6R along the x axis. In all
of the simulations, softening length �=2−8R is introduced to reduce
the numerical error caused by close encounters. The LV ratio b is
plotted as a function of Mr /Mtot, where Mtot is the total mass of the
system. The virial ratios at Mr are time averaged. It ranges from t
=5tf f and t=10tf f with 1tf f intervals in the SC, and from t=500tf f

and t=550tf f with 10tf f intervals in the CC. �More details on our
simulations are shown in �4�.�

IGUCHI, SOTA, NAKAMICHI, AND MORIKAWA PHYSICAL REVIEW E 73, 046112 �2006�

046112-2



� � �
1

�
�� − �a��� − �b� . �11�

From condition �11�, both Case A and C have no scale in-
variant solution ��1�. In the case of �→ ±� in Table I, the
density is zero in some finite radius �y=0� and satisfies the
equality of Eq. �11�. Thus, the density has an inner hole
�outer truncation� at �→−� ��→ � �.

Now we investigate the solutions of Eq. �8� in detail. Dif-
ferentiating Eq. �8� with respect to ln x, we get the following
closed second-order differential equation for �:

� � −
3 − �

�
� ��� −

1

3 − �
��a + �b − �� − 1��1��

=
� − 1

�2 �� − �a��� − �b��� − �1� . �12�

Using Eq. �12�, we study the flow of solutions in the �� � ,��
phase space for the above three cases. Note that the solution
with � ��0 is unphysical because this solution is unstable.

In Case A, the flow of the solutions in Eq. �12� is shown
in Fig. 2. All solutions have an outer truncation beyond a
finite radius ��→ � �. The behavior of the solutions is clas-
sified into two families by the solution which starts from the
fixed point �=�a and is represented by a solid line in Fig. 2.

Solutions, which exist in upper region of this solid line, cor-
respond to the density profile having an inner hole and an
outer truncation. These are unphysical solutions because the
solutions with an inner hole are unstable. On the other hand,
solutions which exist in lower region of this solid line, cor-
respond to the density profile behaves ��r−�b as r→0 and
has an outer truncation. This second family is also unphysi-
cal because this family has a negative � �. Finally, the solu-
tion, which is represented by a sold line in Fig. 2, is realistic
because the density profile behaves ��r−�a as r→0 and has
an outer truncation beyond a finite radius.

In Case C, the behavior of the �� � ,�� phase space is
shown in Fig. 3 and is same as one in Case A. The realistic
solutions are represented by a solid line where the density
profile behaves ��r−�a as r→0 and has an outer truncation.

Figures 4–6 show the behavior of the �� � ,�� phase space
in Case B. In this case, the behavior of the solutions in Eq.
�12� depends on whether b is less than, greater than, or equal
to a critical value bcrit=1, where �1= ��a+�b� /2 and the LV
relation is satisfied.

For b�bcrit, the flow of the solutions is shown in Fig. 4.
In this case, all solutions—except one—are unphysical be-
cause the density profile has an inner hole. The only excep-
tional solution is represented by a solid line which starts
from �=�a and ends at �=�1 in Fig. 4. The density profile of
this solution behaves as ��r−�a in the limit of r→0 and

FIG. 2. The flow diagram in the �� � ,�� phase space for Case A.
The parameters are set to �
 ,b�= �7/8 ,3 /2�. A dashed line repre-
sents the boundary defined by Eq. �11�. Two filled circles denote the
fixed points �a �left� and �b �right�, respectively.

FIG. 3. The same as Fig. 2, but for Case C. The parameters are
set to �
 ,b�= �1/2 ,3 /2�.

FIG. 4. The same as Fig. 2, but for Case B �0�b�1�. The
parameters are set to �
 ,b�= �3/4 ,3 /4�. Three filled circles denote
the fixed points �a �left�, �1 �middle�, and �b �right�, respectively.

FIG. 5. The same as Fig. 4, but for Case B �1�b�2�. The
parameters set are to �
 ,b�= �5/7 ,9 /8�.
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undergoes damped oscillation around ��r−�1 in the limit of
r→�.

For b�bcrit, the flow of the solutions is shown in Fig. 5.
The behavior of the solutions in this case corresponds to a
mirror image of one in the case b�bcrit. The behavior of the
solutions is classified into two families by the solution which
starts from the fixed point �=�a and is represented by a solid
line in Fig. 5. Solutions which exist in upper region of this
solid line, are unphysical because the solutions have an inner
hole. On the other hand, solutions which exist in lower re-
gion of this solid line, go around ��r−�1 and have an outer
truncation beyond a finite radius or end at �=�b ���r−�b�.
This second family with positive � � is physical. Similarly,
the solution which starts from �=�a and is represented by a
sold line in Fig. 5, is also realistic, because the density pro-
file behaves ��r−�a as r→0 and has an outer truncation
beyond a finite radius.

Figure 6 shows the flow of the solution for b=bcrit. In this
case, there is the following first integral:

K = �� � +
2�1 − 
�
5 − 4


�� − �a��� − �b��2�1−
��� � −
1

5 − 4


��� − �a��� − �b�� . �13�

Specifically, K=0 leads to Eq. �11� and

� � = −
2�1 − 
�
5 − 4


�� − �a��� − �b� . �14�

Equation �14� shows the critical solution, which starts from
�=�a and ends at �=�b, and is represented by a solid line in
Fig. 6. Solutions which exist in the upper region of this criti-
cal solution, have an inner hole. Others which exist in lower
region of the critical solution, eternally oscillate around the
fixed point �=�1. From these behaviors, all solutions are
unphysical except the critical solution. The only critical so-
lution is physical and has a special characteristic that it
shows power law behavior in the both limiting region r→0
���r−�a� and � ���r−�b�.

It is easy to obtain an analytical form of the critical solu-
tion. From Eq. �14�, we get

� =
�a + �bx2�1−
�

1 + x2�1−
� , �15�

where we choose an integral constant as ��1�=�1. Integrat-
ing, again, Eq. �15�, we obtain

� =
1 + s

4�r0
3 Mtotx

2−s�1 + xs�−�1+1/s�, �16�

M = Mtot�1 + x−s�−�1+1/s�, �17�

	 =
GMtot

r0
�1 + xs�−1/s, �18�

�2 =
GMtot

2r0
�1 + xs�−1/s, �19�

�/�3 =
1 + s
�2�

�Mtot

Gr0
	3/2

x2−s�1 + xs�−�2−1/2s�, �20�

where sª2�1−
�, Mª
0
x4�u2�du, and Mtot is a total mass

�4�r0
3�0� / �1+s�. This critical solution was found by Velt-

mann �9� and Evans and An �6� obtained it by solving Jeans
equation assuming the LV relation.

The role of the LV ratio is similar to the scale invariant
phase space density which is observed in the cosmological
simulations based on the cold dark matter scenario. Assum-
ing the scale invariant phase space density ��3 /��r−a� and
solving Jeans equation for a spherically steady-state system
�8�, the critical value acr=35/18 exists and the flow diagram
in the phase space around the critical value is similar to one
in the case with the LV ratio. The critical solution with the
anisotropy parameter 
=7/8 shows the scale invariant phase
space density �a=7/4�acr�.

IV. COMPARISON WITH SIMULATION

In the previous section, we showed that the LV relation is
satisfied quite well for cold collapse simulations, except for
the case with a highly concentrated initial matter distribution.
We can classify the N-body simulations into two main
classes from the viewpoints of the behavior of anisotropy
parameter 
 for the bound state after a cold collapse. First
are the ones with the initial homogeneous sphere, where the
particles are distributed homogeneously in the spherical re-
gion, which we call Class I. In these initial conditions, a
large amount of particles reach the mass center at the same
time, which causes the high-density central region with the
isotropic velocity dispersion after the collapse. Actually, we
got the results that 
 vanishes in the region within the central
30% cumulative mass regardless of the initial virial ratio in
such cases �Fig. 7�. On the other hand, the bound state start-
ing from the other initial conditions show that 
 is positive
and monotonically increases against the cumulative mass
�Fig. 8�. Hence, we classify the simulations with these initial
conditions into the second class and call it Class II. As for
the difference of the initial conditions between Classes I and
II, our simulations suggest that whether the system belongs

FIG. 6. The same as Fig. 4, but for Case B �b=1�. The param-
eters are set to �
 ,b�= �1/2 ,1�. The solid line connected between �a

and �b denotes the critical solution.
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to Class I or Class II depends on the strength of mixing
experienced during the collapse �4�. The collapse from a ho-
mogeneous sphere leads to the more violent mixing, and the
velocity dispersion becomes isotropic in the central region
�Class I�. On the other hand, the collapse from a centrally
concentrated density profile or the CC leads to the mild mix-
ing and the anisotropy at center region emerges �Class II�.

Here, we compare the results of these N-body simulations
with those of the critical solutions in the previous section
from the viewpoints of mass density, temperature-mass �TM�
relation, and phase space density. In cosmological simula-
tions, it is well known that the phase space density has a
remarkable character, i.e., it has a single exponent with a
radius in the wide range of the viriallized region, despite the
fact that the density has two different exponents �10�. How-
ever, it is not obvious that it behaves in the same way for the
simulations with different initial conditions. Hence, it seems
meaningful to examine the behavior of this quantity in our
cold collapse simulations.

First, we compare the numerical results in the simulations
of Class I with the critical solutions with constant 
. The
densities fit well to the distribution of the Plummer’s solution
in the inner region as is shown in our previous paper �Fig. 9�.
They, however, deviate from the Plummer’s distribution in

the outer region where the velocity anisotropy is developed.
We observe that the density in this region fits rather well to
that of the critical solution with positive constant 
. Both the
TM relation and the phase space density have the same char-
acters, i.e., both of them fit well to those of the Plummer’s
solution in the inner region and to those of the positive con-
stant 
 critical solution in the outer region �Figs. 10 and 11�.
We can also derive the analytical solution which fits well to
all of these physical quantities in the full region by connect-
ing the inner Plummer’s solution with the outer critical solu-
tion with positive constant 
 �Appendix B or �11��. The
phase space density in these simulations becomes flat in the
central part as well as the mass density. In the critical solu-
tion, the central part is described by the fixed point �=�a, for
which the exponent of the relative potential vanishes. Hence,
the exponent of the phase space density inevitably takes the
same value as that of the mass density at the center, as long
as the phase space distribution follows the critical solution
with constant 
.

For the simulations of Class II, the anisotropy parameter

 behaves quite differently. In those cases, the velocity dis-
persion is anisotropic even in the inner region. Actually, the
mass densities for those simulations are neither cuspy nor flat
in the central region �Fig. 12�. Although the anisotropy pa-

FIG. 7. The distribution of the anisotropy parameter 
�r� for the
simulations of Class I. The plot with an error bar is the result of the

numerical simulations SC with �bt̄ ,a�= �0,0� �gray triangle� and

�bt̄ ,a�= �0.5,0� �black diamond� in Fig. 1. A solid horizontal line
represents the critical solutions �16�–�20� with constant 
. Each line
represents the critical solution with 
=0 �solid line�, 0.25 �dotted-
dashed line�, 0.5 �dashed line�, and 0.75 �dotted line�, respectively.

FIG. 8. Same as Fig. 7, but for the simulations of Class II. The

plot is the result of the numerical simulations SC with �bt̄ ,a�
= �0,1� �black diamond�, �0,2� �gray triangle�, and CC �cross� in
Fig. 1. Each line represents the critical solution with 
=0 �solid
line�, 0.25 �dotted-dashed line�, 0.5 �dashed line�, and 0.75 �dotted
line�, respectively.

FIG. 9. A log-log plot for a density profile for Class I simula-
tions with the unit of rh=Mtot=G=1, where rh is the half-mass
radius of the bound system. The plot is the result of the numerical

simulations SC with �bt̄ ,a�= �0,0� �gray triangle� and �bt̄ ,a�
= �0.5,0� �black diamond� in Fig. 1. Each line represents the critical
solution with 
=0 �solid line�, 0.25 �dotted-dashed line�, 0.5
�dashed line�, and 0.75 �dotted line�, respectively.

FIG. 10. Phase space density for Class I simulations with the
unit of rh=Mtot=G=1. The plot is the result of the numerical simu-

lations SC with �bt̄ ,a�= �0,0� �gray triangle� and �bt̄ ,a�= �0.5,0�
�black diamond� in Fig. 1. Each line represents the critical solution
with 
=0 �solid line�, 0.25 �dotted-dashed line�, 0.5 �dashed line�,
and 0.75 �dotted line�, respectively.
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rameter 
 is not constant but is monotonically increasing
outward, the density profiles fit well to that of the critical
solutions with 
=0.5 to 0.75 in full of the bound region.
Both the phase space densities and TM relations for these
simulations are also fitted to these critical solutions quite
well, except for the case with the initial high-density simu-

lation with �bt
¯ ,a�= �0,2�.

In this last case with �bt
¯ ,a�= �0,2�, the phase space den-

sity becomes cuspy against the behavior of the mass density
�Fig. 13� and the temperature falls off at the center against
the behavior of any critical solutions �Fig. 14�. These results
are certainly correlated with the deviation from the LV rela-
tion at the central region. In this simulation, the kinetic en-
ergy is not sufficiently gained to attain the LV relation, which
reflects both the temperature falling off and the steepness of
the phase space density which is derived from dividing the
density with the falling temperature.

V. CONCLUSION AND DISCUSSIONS

We focused on the LV relation and investigated the role of
the LV relation in a spherically symmetric steady-state sys-
tem. Assuming the constant LV ratio and solving Jeans equa-
tion for a spherically steady-state system, we studied the full
solution space of the problem under constant anisotropy pa-
rameter and obtained some meaningful solutions. Specifi-
cally, if the LV relation is satisfied, the solution of the power-

law behavior of the density profile in both the asymptotic
regions r→0 and � exists and is commonly observed in
many numerical simulations. In this sense, the LV relation
plays a critical role in solutions of the Jeans equation for a
spherically steady-state system.

In the previous section, we compared our cold collapse
simulations with the critical solution with constant aniso-
tropy parameter 
. We obtained results where the simula-
tions agree with the critical solutions quite well, except for

the initially high-density simulation with �bt
¯ ,a�= �0,2�. In

that simulation, the LV ratio b becomes smaller than 1.0
around the center, where the temperature falls off and the
phase-space density becomes steeper than the mass density.

These results remind us of the cosmological simulations
for which both mass density and the phase space density
have the universal characters. In the cosmological simula-
tion, the phase space density behaves as � /�3�r−�, where
��1.87 �8,10�, which is larger than the exponent of the
mass density in the central part and the temperature falls off
in the central region. Hence, we speculate that both the initial
high-density simulations and cosmological simulations have
common characters for the phase space distribution. This
may be because in the initially high-density simulation, the
matter in the central part collapse to make a core in the early
stage and the matter in the outer part gradually fall into the
core in the later stage, which is similar to the case with the
secondary infall in the cosmological simulation.

However, we have to be careful to conclude that these
results mean the inapplicability of the LV relation for these

FIG. 11. TM relations for Class I simulations with the unit of
rh=Mtot=G=1. The plot with an error bar is the result of the nu-

merical simulations SC with �bt̄ ,a�= �0,0� �gray triangle� and

�bt̄ ,a�= �0.5,0� �black diamond� in Fig. 1. Each line represents the
critical solution with 
=0 �solid line�, 0.25 �dotted-dashed line�, 0.5
�dashed line�, and 0.75 �dotted line�, respectively.

FIG. 12. Same as Fig. 9, but for Class II simulations. The plot is

the result of the numerical simulations SC with �bt̄ ,a�= �0,1� �black
diamond�, �0,2� �gray triangle�, and CC �cross� in Fig. 1.

FIG. 13. Same as Fig. 10, but for Class II simulations. The plot

is the result of the numerical simulations SC with �bt̄ ,a�= �0,1�
�black diamond�, �0,2� �gray triangle�, and CC �cross� in Fig. 1.

FIG. 14. Same as Fig. 11, but for Class II simulations. The plot
with an error bar is the result of the numerical simulations SC with

�bt̄ ,a�= �0,1� �black diamond�, �0,2� �gray triangle�, and CC
�cross� in Fig. 1.
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cases, because we compared these cases only when 
 was
constant. Actually, some numerical results mainly based on
the cosmological simulations suggest the linear relation be-
tween the density slope and 
 �12�. It is not obvious that the
same kind of asymptotic behavior of the critical solutions
obtained under the LV relation are sustained for any function
form of 
�r�. We will discuss these points in our coming
paper.
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APPENDIX A: SOLUTION FOR �=1 CASE

1. 
=1 case
In the case for �
 ,b�= �1,1�, Eq. �8� becomes

� � = �� − �+��� − �−� =  , �A1�

where

�+ =
5 + �1 − 4

2
, �− =

5 − �1 − 4

2
. �A2�

Integrating the Eq. �A1�, we obtain

� =
�+ + �−x�+−�−

1 + x�+−�−
, �A3�

where we choose the integral constant as satisfying the con-
dition ��1�= ��++�−� /2. At large x, � approaches �− and the
total mass is infinite because �−�5/2. From Eqs. �7�, �5�,
and �A3�, we have

� � x−�+�1 + x�+−�−� , �A4�

M � 4�x3−�+� 1

3 − �+
+

x�+−�−

3 − �−
	 , �A5�

	 � x2−�+�1 + x�+−�−� , �A6�

�2 �
1

2
x2−�+�1 + x�+−�−� , �A7�

�/�3 � 23/2x�+/2−3�1 + x�+−�−�−1/2, �A8�

where Mª
0
x4�u2�du.

2. 
�1 case
In this case, Eq. �8� becomes

� � − �� − �a��� − �b� = x2�1−
�, �A9�

where

�a = 2
, �b = 2
 + 1. �A10�

The behavior of the solutions in Eq. �A9� is shown in Fig.
15. In the limit r→0, � approaches �a or �b or −� �inner
hole�. On the other hand, in the limit r→�, all solutions
have an outer truncation at r=�. A physically meaningful
solution is represented by a solid line in Fig. 15, where �
approaches �a at r→0.

APPENDIX B: THE CONNECTION OF RELATIVE
POTENTIALS

Here, we connect two critical solutions with different val-
ues of constant 
, which leads to the critical solution with a
step function form of 
�r�. Here, we use the unit G=rc

=	c=1, where rc is the radius of the connected position and
	c is the value of the relative potential at r=rc. In this unit,
the relative potentials 	1 in the inner region and 	2 in the
outer region are described as

	1 = � 1 + c1
s1

rs1 + c1
s1
	1/s1

, �B1�

	2 = � 1 + c2
s2

rs2 + c2
s2
	1/s2

, �B2�

respectively. Each potential includes a free parameter c1 or
c2, other than the parameters s1 and s2 related to the aniso-
tropy of each region. From the continuous condition of the
first derivative of 	1 and 	2 against r at r=1, c2 is described
as

c2 = c1
s1/s2. �B3�

Hence, the connected solution depends on the one-parameter
c=c1 for given s1 and s2.

This parameter c determines the mass fraction of the inner
solution 	1 against total mass as

M1

Mtot
= �1 + cs1�−1−1/s2. �B4�

Hence, we can adjust the mass fraction of the inner region by
changing the parameter c.

FIG. 15. The same as Fig. 2, but for case �=1�
�1�. The
parameters are set to �
 ,b�= �3/4 ,3 /2�.
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